
A HYBRID PARALLEL SOLVER FRAMEWORK FOR GENERAL SPARSE LINEAR
SYSTEMS

SIVASANKARAN RAJAMANICKAM, ERIK G. BOMAN, AND MICHAEL A. HEROUX

1. Introduction

As parallelism in a single node increases, computational science applications have to adapt to a hybrid system where
each compute node by itself is a shared memory system. This presents new challenges and opportunities for robust
sparse linear solvers and preconditioners on the node. For example, domain decomposition based preconditioners
can scale better with node level sparse linear solver/preconditioner as the number of subdomains can be limited to
the number of nodes (leading to fewer iterations). Even within a node, high performance solvers should account for
NUMA based architectures. We present a hybrid solver, HyperLU, for solving general sparse linear systems on the
node. HyperLU can also be used as a preconditioner.

2. Solver Framework

Our approach includes two levels of parallelism, where the top level is based on exploiting bordered block structure.
Although such structure sometimes occurs naturally, we use hypergraph partitioning to find such block structure.
Solvers that use this idea have been implemented in distributed memory architectures [1]. We use a similar framework
for our solver, but limit the subdomains (and MPI tasks) to the NUMA regions in a shared memory node. Each
subdomain (diagonal block) can be solved either exactly or ineaxactly. Note that any multithreaded sparse solver can
be used here to exploit fine-grain parallelism.

Figure 1. Column ordering and symmetric reordering using hypergraph partitioning.

Figure 1(a) shows a matrix A with column ordering from a hypergraph partition. The hypergraph model in general
can handle unsymmetric sparse matrices. It is also more suitable for partial pivoting on the columns and for a
left-looking sparse LU factorization on each of the subdomain (as no row is shared between two subdomains). For
symmetric matrices, the column ordering can also be used as a row ordering to get square subdomains, and the
reordered matrix will have the structure shown in figure 1(b). Once the subdomains are solved in parallel we can
solve for the Schur complement to solve for A. The Schur complement is never explicitly computed. We compute
an approximate Schur complement using probing for a predetermined structure and use an inner iteration to solve it.
This results in a much smaller system for the iterative methods. We can also replace the solve on the subdomains with
incomplete factorization algorithms and use this framework as a node level hybrid preconditioner in a global solve.

3. Experimental Results

HyperLU is currently implemented as a preconditioner in the Trilinos framework [2] with AztecOO as the iterative
solver. The serial solver KLU is used to solve each subdomain, as our multithreaded version is still under develop-
ment. All the experiments use Zoltan as the hypergraph partitioner to partition for four subdomains (for the NUMA

Scalable Algorithms Department, Sandia National Laboratories, Albuquerque, NM. Sandia is a multiprogram laboratory operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the United States Department of Energy’s National
Nuclear Security Administration under Contract DE-AC04-94AL85000.

1



Figure 2. Comparison of the size of the Schur complement for graph and hypergraph partitioning.

regions/sockets). The tests use symmetric matrices of the size 10K to 20K rows from the UF sparse matrix collection,
one matrix from a Sandia application (Tramanto) and a synthetic FEM matrix from MATLAB (wathenLarge).

Trilinos framework has no support for hybrid methods like HyperLU where the iterative method can be used just
on the Schur complement. As a result, the experiments iterate over the entire matrix, even when the subdomains
were solved exactly using KLU. The results will get better as the software can be adapted to iterate on the Schur
complement. Table 1 shows the number of iterations for AztecOO to converge for HyperLU, ML (Algebraic multilevel
method) and two incomplete factorizations. A ‘-’ in the number of iterations show that the method did not converge
for that test case. HyperLU is as good as or better than the other incomplete factorizations for these tests. The
parameters of ILU and ILUT can be modified for better performance than shown here. The experiments shown here
uses the default values level of fill zero for ILU and ILUT with level of fill as one and drop tolerance as 1e− 12.

Matrix Name HyperLU ML ILU ILUT
Cage11 13 14 12 12
cbuckle 101 - - -
Lourakis 28 20 42 38
FIDAPex35 16 - - -
Oberwolfach - 27 - -
fem 3d thermal 25 23 26 25
Dubkova1 56 55 189 154
Tramanto 112 - - -
wathenLarge 35 14 36 37

4. Observations

Although the hypergraph based nested dissection exposes parallelism for our solver framework, the objective for
the partitioning in our problem is different than the objective for hypergraph partitioning. The ideal partitioning
objective for HyperLU style solver is that subdomains be better balanced, with a small separator and a sparser (or
better structured) Schur complement. No partitioners solve this objective directly. However, graph partitioning can be
used instead of hypergraph partitioning as the test matrices were symmetric. Figure 2 compares graph (METIS) and
hypergraph (Patoh) partitioning with 53 matrices of size 1K to 10K rows from the UF sparse matrix collection. We
explicitly compute the Schur complement in MATLAB for these matrices. The improvement in hypergraph partitioner
over graph partitioner in terms of the number of non-zeros in the Schur complement is marginal for this set of matrices.
However, hypergraph partitioning is best suited for our approach of using a left-looking solver that uses partial pivoting
in the subdomains.

References

[1] I. S. Duff and J. A. Scott. A parallel direct solver for large sparse highly unsymmetric linear systems. ACM Trans. Math. Softw.,
30(2):95–117, 2004.

[2] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T.
Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley. An overview of the
trilinos project. ACM Trans. Math. Softw., 31(3):397–423, 2005.


